Professor David Mackey awarded 2015 Churchill Fellowship

Professor Mackey was one of 109 Australians awarded a 2015 Churchill Fellowship to study Fluorescein Angiography in the UK, Germany and USA. My fellowship to study Fluorescein Angiography in the UK, Germany and USA. My fellowship to study Fluorescein Angiography in the UK, Germany and USA. My fellowship to study Fluorescein Angiography in the UK, Germany and USA. My fellowship to study Fluorescein Angiography in the UK, Germany and USA.

The LEI and the Vision Regeneration Laboratory at the Centre for Eye Research Australia have joined forces to accelerate therapeutic development for retinitis pigmentosa (RP) sufferers.

This project, funded by Retina Australia, aims to accelerate genome scale research on people with RP. These efforts will further inform and extend our knowledge on RP.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina. The ultimate goal is to prevent or reverse the destruction of sight through the inhibition or restoration of sight.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina.

Although it is not possible to transplant the extraocular muscles, the vessels in the retina can be transplanted and used to form a new retina. This technique could be used to create a new retina in the eye and improve vision in patients with RP.

New therapies for retinitis pigmentosa in the frame

The LEI and the Vision Regeneration Laboratory at the Centre for Eye Research Australia have joined forces to accelerate therapeutic development for retinitis pigmentosa (RP) sufferers.

This project, funded by Retina Australia, aims to accelerate genome scale research on people with RP. These efforts will further inform and extend our knowledge on RP.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina. The ultimate goal is to prevent or reverse the destruction of sight through the inhibition or restoration of sight.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina.

Although it is not possible to transplant the extraocular muscles, the vessels in the retina can be transplanted and used to form a new retina. This technique could be used to create a new retina in the eye and improve vision in patients with RP.

New therapies for retinitis pigmentosa in the frame

The LEI and the Vision Regeneration Laboratory at the Centre for Eye Research Australia have joined forces to accelerate therapeutic development for retinitis pigmentosa (RP) sufferers.

This project, funded by Retina Australia, aims to accelerate genome scale research on people with RP. These efforts will further inform and extend our knowledge on RP.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina. The ultimate goal is to prevent or reverse the destruction of sight through the inhibition or restoration of sight.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina.

Although it is not possible to transplant the extraocular muscles, the vessels in the retina can be transplanted and used to form a new retina. This technique could be used to create a new retina in the eye and improve vision in patients with RP.

New therapies for retinitis pigmentosa in the frame

The LEI and the Vision Regeneration Laboratory at the Centre for Eye Research Australia have joined forces to accelerate therapeutic development for retinitis pigmentosa (RP) sufferers.

This project, funded by Retina Australia, aims to accelerate genome scale research on people with RP. These efforts will further inform and extend our knowledge on RP.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina. The ultimate goal is to prevent or reverse the destruction of sight through the inhibition or restoration of sight.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina.

Although it is not possible to transplant the extraocular muscles, the vessels in the retina can be transplanted and used to form a new retina. This technique could be used to create a new retina in the eye and improve vision in patients with RP.

New therapies for retinitis pigmentosa in the frame

The LEI and the Vision Regeneration Laboratory at the Centre for Eye Research Australia have joined forces to accelerate therapeutic development for retinitis pigmentosa (RP) sufferers.

This project, funded by Retina Australia, aims to accelerate genome scale research on people with RP. These efforts will further inform and extend our knowledge on RP.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina. The ultimate goal is to prevent or reverse the destruction of sight through the inhibition or restoration of sight.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina.

Although it is not possible to transplant the extraocular muscles, the vessels in the retina can be transplanted and used to form a new retina. This technique could be used to create a new retina in the eye and improve vision in patients with RP.

New therapies for retinitis pigmentosa in the frame

The LEI and the Vision Regeneration Laboratory at the Centre for Eye Research Australia have joined forces to accelerate therapeutic development for retinitis pigmentosa (RP) sufferers.

This project, funded by Retina Australia, aims to accelerate genome scale research on people with RP. These efforts will further inform and extend our knowledge on RP.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina. The ultimate goal is to prevent or reverse the destruction of sight through the inhibition or restoration of sight.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina.

Although it is not possible to transplant the extraocular muscles, the vessels in the retina can be transplanted and used to form a new retina. This technique could be used to create a new retina in the eye and improve vision in patients with RP.

New therapies for retinitis pigmentosa in the frame

The LEI and the Vision Regeneration Laboratory at the Centre for Eye Research Australia have joined forces to accelerate therapeutic development for retinitis pigmentosa (RP) sufferers.

This project, funded by Retina Australia, aims to accelerate genome scale research on people with RP. These efforts will further inform and extend our knowledge on RP.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina. The ultimate goal is to prevent or reverse the destruction of sight through the inhibition or restoration of sight.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina.

Although it is not possible to transplant the extraocular muscles, the vessels in the retina can be transplanted and used to form a new retina. This technique could be used to create a new retina in the eye and improve vision in patients with RP.

New therapies for retinitis pigmentosa in the frame

The LEI and the Vision Regeneration Laboratory at the Centre for Eye Research Australia have joined forces to accelerate therapeutic development for retinitis pigmentosa (RP) sufferers.

This project, funded by Retina Australia, aims to accelerate genome scale research on people with RP. These efforts will further inform and extend our knowledge on RP.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina. The ultimate goal is to prevent or reverse the destruction of sight through the inhibition or restoration of sight.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina.

Although it is not possible to transplant the extraocular muscles, the vessels in the retina can be transplanted and used to form a new retina. This technique could be used to create a new retina in the eye and improve vision in patients with RP.

New therapies for retinitis pigmentosa in the frame

The LEI and the Vision Regeneration Laboratory at the Centre for Eye Research Australia have joined forces to accelerate therapeutic development for retinitis pigmentosa (RP) sufferers.

This project, funded by Retina Australia, aims to accelerate genome scale research on people with RP. These efforts will further inform and extend our knowledge on RP.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina. The ultimate goal is to prevent or reverse the destruction of sight through the inhibition or restoration of sight.

Researchers are also investigating a number of other avenues to prevent the process of permanent cell death in the retina.

Although it is not possible to transplant the extraocular muscles, the vessels in the retina can be transplanted and used to form a new retina. This technique could be used to create a new retina in the eye and improve vision in patients with RP.
Thomson Bone’s legacy to medical research

The late Professor Thomson Bone was a renowned jazz musician who performed and lived in locations throughout Australia in 1953.”

Anna Taphorn supports the vital mission to eliminate preventable blindness and vision loss in people living in remote areas. Her brother Thomas was a keen canoeist and his photography in the Royal Show.”

The LEI-developed glaucoma shunt showcased to the world

The LEI's Dr Andrew Giubilato delivered an important talk on glaucoma to Perth Glaucoma Support Group in May.

The LEI proudly commemorated Thomson Bone’s legacy to medical research in our laboratories on April 22, 2015. The LEI has received a very generous bequest from Mr Mike Bone Thompson. His executors and colleagues of 68 years, even after his death, decided that the family was made up of the people involved. Anna started out on the conveyer assembly line, studying a digital in the technical college, and building and repairing her own.

Anna Taphorn was a renowned jazz musician who performed and lived in locations throughout Australia in 1953.”

Anna Taphorn supports the vital mission to eliminate preventable blindness and vision loss in people living in remote areas. Her brother Thomas was a keen canoeist and his photography in the Royal Show.”

The LEI-developed glaucoma shunt showcased to the world

The LEI’s Dr Andrew Giubilato delivered an important talk on glaucoma to Perth Glaucoma Support Group in May.

The LEI proudly commemorated Thomson Bone’s legacy to medical research in our laboratories on April 22, 2015. The LEI has received a very generous bequest from Mr Mike Bone Thompson.